ISSN 1600-5368

Jun Wan,^a Xue-Mei Li,^b Zheng-Zhong Peng,^b Ping-Kai Ouyang^a and Shu-Sheng Zhang^a*

^aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210093 Nanjing, Jiangsu, People's Republic of China, and ^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.006 Å R factor = 0.064 wR factor = 0.150 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 18 May 2006 Accepted 29 May 2006

2-(1*H*-1,2,3-Benzotriazol-1-ylmethyl)-1-(4-chlorobenzoyl)ethyl 2,4-dichlorobenzoate

In the title compound, $C_{22}H_{14}Cl_3N_3O_3$, molecules are linked into two-dimensional layers in the *ab* plane by $C-H\cdots N$ and $C-H\cdots Cl$ hydrogen bonds. The packing is further stabilized by $\pi-\pi$ interactions. There are two molecules in the asymmetric unit.

Comment

In our ongoing studies of benzotriazole compounds, the title compound, (I), was obtained. The asymmetric unit of (I) contains two crystallographically independent molecules, A and B (Fig. 1). Corresponding bond lengths of these two molecules agree within two standard deviations (Table 1). In molecules A and B, the benzotriazole system is almost planar, with dihedral angles of 1.1 (2) and 1.3 (2)°, respectively, between the planes of the triazole ring and its fused benzene ring. In A, the dihedral angles between the mean planes of the benzotriazole system and rings C (C1–C6) and D (C17–C22) are 15.0 (2) and 18.1 (2)°, respectively. The corresponding values are 22.6 (2) and 11.0 (2)° for B. The dihedral angles between rings C and D are 27.4 (2) and 21.9 (2)° for A and B, respectively.

In the crystal structure, molecules of (I) are linked into twodimensional layers in the *ab* plane by C-H···N and C-H···Cl hydrogen bonds (Fig. 2 and Table 2). The packing is further stabilized by π - π interactions involving the benzotriazole and benzene rings, with $Cg1 \cdots Cg5^{iii}$ and $Cg2 \cdots Cg7^{iv}$ distances of 3.665 and 3.590 Å, respectively [Cg1, Cg2, Cg5and Cg7 are the centroids of the N1-N3/C10/C11, N4-N6/C32/ C33, C17-C22 and C32-C37 rings, respectively; symmetry codes: (iii) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (iv) 1 - x, 1 - y, -z].

Experimental

© 2006 International Union of Crystallography All rights reserved The title compound was prepared according to the method of Wan *et al.* (2006). Single crystals were obtained by slow evaporation of an

Figure 1

The structure of the asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. H atoms have been omitted for clarity.

ethyl acetate solution at room temperature over a period of one week.

Z = 8

 $D_x = 1.523 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 0.47 \text{ mm}^{-1}$ T = 293 (2) KColumn, colourless

 $0.23 \times 0.12 \times 0.09 \text{ mm}$

23763 measured reflections

 $R_{\rm int} = 0.059$

 $\theta_{\rm max} = 26.1^{\circ}$

8117 independent reflections

4005 reflections with $I > 2\sigma(I)$

Crystal data

C22H14Cl3N3O3
$M_r = 474.71$
Monoclinic, $P2_1/c$
a = 11.941 (3) Å
b = 25.588 (6) Å
c = 13.780 (3) Å
$\beta = 100.508 \ (4)^{\circ}$
V = 4139.8 (15) Å ³

Data collection

Siemens SMART 1000 CCD areadetector diffractometer ω scans Absorption correction: multi-scan

(SADABS; Sheldrick, 1996) $T_{min} = 0.899, T_{max} = 0.959$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.065$	$w = 1/[\sigma^2(F_0^2) + (0.0597P)^2]$
$wR(F^2) = 0.150$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
8117 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ \AA}^{-3}$
559 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Selected bond lengths (Å).

Cl1-C3	1.734 (4)	O2-C16	1.354 (4)
Cl2-C18	1.736 (4)	O2-C8	1.441 (4)
Cl3-C20	1.737 (4)	O3-C16	1.189 (4)
Cl4-C25	1.735 (4)	O4-C29	1.214 (4)
Cl5-C40	1.737 (4)	O5-C38	1.364 (4)
Cl6-C42	1.733 (4)	O5-C30	1.435 (4)
O1-C7	1.211 (4)	O6-C38	1.194 (4)

Figure 2

The two-dimensional layers of (I). Hydrogen bonds are indicated by dashed lines.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$			
$C9-H9A\cdots N6^{i}$	0.97	2.43	3.171 (5)	132			
$C31-H31B \cdot \cdot \cdot N3^{ii}$	0.97	2.52	3.287 (5)	136			
$C36-H36A\cdots Cl4^{i}$	0.93	2.81	3.608 (4)	144			

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C-H distances in the range 0.93–0.98 Å, and with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (grant No. 05-2-JC-80) and the Outstanding Young Adult Scientific Research Encouraging Foundation of Shandong Province (grant No. 2005BS04007).

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wan, J., Peng, Z.-Z., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, 0634–0636.