Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jun Wan, ${ }^{\text {a }}$ Xue-Mei Li, ${ }^{\text {b }}$
Zheng-Zhong Peng, ${ }^{\text {b }}$ Ping-Kai Ouyang ${ }^{\mathbf{a}}$ and Shu-Sheng Zhang ${ }^{\text {a * }}$
${ }^{\text {a College of Life Science and Pharmaceutical }}$ Engineering, Nanjing University of Technology, 210093 Nanjing, Jiangsu, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.064$
$w R$ factor $=0.150$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(1H-1,2,3-Benzotriazol-1-ylmethyl)-1-(4-chlorobenzoyl)ethyl 2,4-dichlorobenzoate

In the title compound, $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$, molecules are linked into two-dimensional layers in the $a b$ plane by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. The packing is further stabilized by $\pi-\pi$ interactions. There are two molecules in the asymmetric unit.

Comment

In our ongoing studies of benzotriazole compounds, the title compound, (I), was obtained. The asymmetric unit of (I) contains two crystallographically independent molecules, A and B (Fig. 1). Corresponding bond lengths of these two molecules agree within two standard deviations (Table 1). In molecules A and B, the benzotriazole system is almost planar, with dihedral angles of 1.1 (2) and $1.3(2)^{\circ}$, respectively, between the planes of the triazole ring and its fused benzene ring. In A, the dihedral angles between the mean planes of the benzotriazole system and rings C (C1-C6) and $D(\mathrm{C} 17-\mathrm{C} 22)$ are $15.0(2)$ and $18.1(2)^{\circ}$, respectively. The corresponding values are $22.6(2)$ and $11.0(2)^{\circ}$ for B. The dihedral angles between rings C and D are 27.4 (2) and 21.9 (2) ${ }^{\circ}$ for A and B, respectively.

(I)

In the crystal structure, molecules of (I) are linked into twodimensional layers in the $a b$ plane by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Fig. 2 and Table 2). The packing is further stabilized by $\pi-\pi$ interactions involving the benzotriazole and benzene rings, with $C g 1 \cdots C g 5^{\text {iii }}$ and $C g 2 \cdots C g 7^{\text {iv }}$ distances of 3.665 and $3.590 \AA$, respectively [Cg1, Cg2, Cg5 and $C g 7$ are the centroids of the $\mathrm{N} 1-\mathrm{N} 3 / \mathrm{C} 10 / \mathrm{C} 11, \mathrm{~N} 4-\mathrm{N} 6 / \mathrm{C} 32 /$ C33, C17-C22 and C32-C37 rings, respectively; symmetry codes: (iii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $\left.1-x, 1-y,-z\right]$.

Experimental

The title compound was prepared according to the method of Wan et al. (2006). Single crystals were obtained by slow evaporation of an

Received 18 May 2006
Accepted 29 May 2006

Figure 1
The structure of the asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. H atoms have been omitted for clarity.
ethyl acetate solution at room temperature over a period of one week.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=474.71$
Monoclinic, $P 2_{1} / c$
$a=11.941(3) \AA$
$b=25.588(6) \AA$
$c=13.780(3) \AA$
$\beta=100.508(4)^{\circ}$
$V=4139.8(15) \AA^{3}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.899, T_{\text {max }}=0.959$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.150$
$S=1.01$
8117 reflections
559 parameters

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.523 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.47 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Column, colourless } \\
& 0.23 \times 0.12 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

23763 measured reflections 8117 independent reflections 4005 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.059$
$\theta_{\text {max }}=26.1^{\circ}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cl} 1-\mathrm{C} 3$	$1.734(4)$	$\mathrm{O} 2-\mathrm{C} 16$	$1.354(4)$
$\mathrm{Cl} 2-\mathrm{C} 18$	$1.736(4)$	$\mathrm{O} 2-\mathrm{C} 8$	$1.441(4)$
$\mathrm{Cl} 3-\mathrm{C} 20$	$1.737(4)$	$\mathrm{O} 3-\mathrm{C} 16$	$1.189(4)$
$\mathrm{Cl} 4-\mathrm{C} 25$	$1.735(4)$	$\mathrm{O} 4-\mathrm{C} 29$	$1.214(4)$
$\mathrm{Cl} 5-\mathrm{C} 40$	$1.737(4)$	$\mathrm{O} 5-\mathrm{C} 38$	$1.364(4)$
$\mathrm{Cl} 6-\mathrm{C} 42$	$1.733(4)$	$\mathrm{O} 5-\mathrm{C} 30$	$1.435(4)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.211(4)$	$\mathrm{O} 6-\mathrm{C} 38$	$1.194(4)$

Figure 2
The two-dimensional layers of (I). Hydrogen bonds are indicated by dashed lines.

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{~N}^{\mathrm{i}}$	0.97	2.43	$3.171(5)$	132
C31-H31B N^{ii}	0.97	2.52	$3.287(5)$	136
${\text { C36-H36A } \cdots \mathrm{Cl}^{\mathrm{i}}}^{\mathrm{H}}$	0.93	2.81	$3.608(4)$	144

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.
All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (grant No. $05-2-\mathrm{JC}-80)$ and the Outstanding Young Adult Scientific Research Encouraging Foundation of Shandong Province (grant No. 2005BS04007).

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wan, J., Peng, Z.-Z., Li, X.-M. \& Zhang, S.-S. (2006). Acta Cryst. E62, o6340636.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

